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Line integral formula for scattering of waves from a thin plate
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We derive formulas for the calculation of scattering amplitude for plates of arbitrary shape. These
formulas are line integrals of the coefficient of the field singularity around the edges of the plate. If this
coefficient is obtained from the exact solution of the wave equation, then these formulas give the scatter-
ing amplitude exactly. If locally this coefficient is approximated by the coefficient of the field singularity
from a half plane, then these formulas give the results obtained by the geometrical theory of diffraction

when only singly diffracted rays are considered.

PACS number(s): 42.25.Fx

I. INTRODUCTION

As is well known, the determination of the scattered
field from an object by Huygen’s principle involves an in-
tegral over the surface of the object. (According to
Babinet’s principle the same type of integral can be ap-
plied to determine the diffracted field from an aperture,
therefore the words “‘scattered” and *‘diffracted” are used
interchangeably throughout this paper.) In dealing with
the problem of diffraction of light from an aperture, it
was first suggested by Young that diffraction was an edge
effect, but this suggestion was generally ignored. After
Kirchhoff converted Huygens’ wave theory into a quanti-
tative form which represents the diffracted field as an in-
tegral over the aperture, it was shown by Maggi that this
integral could be split into two parts, one of which was
the field distribution predicted by geometrical optics, and
the other of which was a line integral over the edge of the
aperture. Later Rubinowicz [1] evaluated the line in-
tegral asymptotically for the case where the wavelength
of the incident field was much smaller than the size of the
aperture. His results gave an explicit expression for the
diffracted field and showed that the diffracted field came
from the neighborhood of the stationary phase points on
the edge of the aperture. Thus Young’s assertion was
confirmed and was converted to a quantitative procedure
for determining the diffracted field. However, all this
work was done in the context of the Kirchhoff approxi-
mation. In this paper we derive an exact expression for
the scattering amplitude from a flat object in terms of a
line integral around its edges.

In a previous paper about the theory of scattering of
waves from surfaces [2], Dashen and Wurmser derived a
number of formulas which represent the scattering ampli-
tude in terms of surfaces integrals for Dirichlet, Neu-
mann, and electromagnetic boundary conditions. Here it
is shown that when the scattering body is a plate of zero
thickness the scattering indeed comes from the edges and
thus these surface integrals can be reduced to line in-
tegrals around the edges of the plate. Therefore the
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scattering amplitude of an arbitrary planar object can be
expressed as a line integral around its edges.

In this paper two-dimensional vectors are denoted by
boldface variables and three-dimensional vectors are
denoted by variables with an overarrow. The scattering
amplitude is given by [2]

Tp(k,q)= o JAQ@-VYp)@-Vy_pds ()
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for the Dirichlet boundary condition,
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for the Neumann boundary condition, and
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for electromagnetic boundary conditions. In the above
equations k is the incoming wave vector, ¢ is the outgo-
ing wave vector, 0=k—gq, Q, is the two-dimensional
component of Q in the plane of the plate, and 1 is the
unit normal to the surface of the plate pointing into the
scattering region. In the electromagnetic formula, € and

g—Ti are the polarization vectors.

II. THEORY

Consider a plate whose edges are parametrized by a
variable s. From the above equations we see that the only
contribution to the scattering amplitude comes from the
edges where ﬁ-Q” is not zero and the fields are singular.
For waves subject to the Dirichlet boundary condition,
the normal derivative of the field evaluated on the surface
of the plate is

B VYHE,57,0)=Cp(K,5)e ™ —=+0(r9) ,
r
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which defines the function C D(E ,§). In this equation r is
the perpendicular distance to the edge and, for conveni-
ence, the coefficient of the singularity is written as e*¥k
times Cp; this makes C; independent of the coordinate
system. In the above x(x) is a two-dimensional position
vector. We get a similar equation for ﬁ-Vzb_a..

Similarly for waves subject to the Neumann boundary
condition,

Vie(K,5,7,0)=Cy(K,5)e ™%~ +0(r) ,
r

where CN(E,S) is the coefficient of the singularity near
the edge. Because of the singularity of the fields on the
edge, the problem needs to be regulated. To do this we
deform the plate so that it ends not on a curve of zero
thickness, but on a thin tube of radius #, as shown by Fig.
1. The boundary conditions on the tube are taken to be
the same as on the plate. For this regulated problem all
the quantities in Egs. (1)-(3) are finite and the answer to
the original problem can be recovered by taking the limit
r—0. On the surface of the tube the unit normal can be
written as

R ypo(s)=cosON +sinbh ,

where N is a unit vector in the plane of the plate perpen-
dicular to and pointing away from the edge and 1 is the
original normal tg the plate. The angle 0 is measured
with respect to N in the counterclockwise direction.
Then Eq. (1) can be written

Tp(k,g)=1lim
P "’OIQHI2
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X [ﬁ'V’/’—Tf( —q,s,r,0)]rdodi(s) .
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Locally the normal derivatives i-Vi/;> and ﬁ-Vl/z;é» have
the same r and 6 behavior as do the normal derivatives of
the solution of the wave equation for a half plane whose
edge is deformed to a tube of radius r satisfying Dirichlet
boundary conditions. It can be shown that at a local
point x(s) on the surface of the tube

ﬁ-Vz,b;(l?,s,r,G =2Cp(k,s)e™ kcosﬁL—FO( )

2 Vi
and
8-VY_(—G,5,7,0)=2Cp(—7,9)
Xe ~ixs )qcosg‘/—7+0(r ).
|
Ty(k,§)= lxm 2¢f cos9[V k,s,r, 0)-Vy_
— k2K, 5,1, 000
where now
V%’(E,S,r, )= 2CN(k s)e ”(S)kCOSQL—FO( )
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FIG. 1. Side view of a thin plate whose edge is deformed to a
tube of radius r.

Substituting the above quantities in Eq. (4), carrying out
the 6 integration, and taking the limit yields

¢NQW

g 2 ix(s)

Tp(K,g)= ~ToF UC,(K,5)Cp(g,s)dl (s) .
I

(5)

Let us define a unit vector T in the plane of the plate and
tangent to the edge such that

N=tx4 .
Then we can write
N-Ql(s)=[dl (s} X1]-Q,
=[dl(s)X#]-Q,
=(AXQ))-dl(s)=(AXQ)-dl(s)

In the second line the vector identity (bXc¢)-a=(cXa)-b
is used. Since |Q”12= [ X Q12 Eq. (5) can be written

—

(k q) ix S)’Q”CD(E,S)CD(_Q},S)

|n><Q|2 Taxard
X(HXQ0)-di(s) . (6)

For the Neumann boundary condition

—4q,s,1,0)

(—q,s5,1,0)]r dO(A X 0)di( @)
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and

Vy_ q( q,s,1,0)=2Cpn(—q,s)e”

¥

6 1
ix(s)-q,
COS——‘/ +0(

Since ¥ and 1/)_? are not singular as r —0, there is no contribution from the second term in Eq. (7) to the integral. We

therefore get

ﬁeix(s)'Q"CN(E’s)CN(—ays)(ﬁXQ)'(ﬁ(S) . ®

Similarly, we find that the scattering amplitude for electromagnetic waves from a plate is given by

(Eq) A—“27le
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where C, is the coefficient of 7~ /2 singularity of the nor-
mal component of E and C), is the coefficient of r R
singularity of the tangential component of H on the edge
of a thin plate.

III. CONCLUSION

It was shown in the above that scattering from a plate
of zero thickness comes entirely from its edges and thus
the scattering amplitude can be expressed in terms of line
integrals around the edges given by Egs. (6), (8), and (9).
If the coefficients of the field singularity which appear in
the integrand are obtained from an exact solution of the
wave equation or Maxwell’s equations, these expressions
are exact. In a sense these formulas are the exact form of
the Maggi-Rubinowicz formulas [3,4]. The Maggi-

—q,€,5)

-nll

0)-di(s), 9)

Rubinowicz formulas are based on the approximate Kir-
choff integral which does not provide an exact descrip-
tion of the field [S]. Such description is obtained from the
exact solution of the wave equation or Maxwell’s equa-
tions plus the boundary conditions. If the wavelength of
the incident field is much smaller than the size of the
plate, the coefficients of the field singularity at the edge
can be approximated by the coefficients of the field singu-
larity at the edge of a half plane. In this case the scatter-
ing amplitudes obtained from these equations are
equivalent to those obtained by the method of geometri-
cal theory of diffraction [6] when only singly diffracted
rays are considered. The geometrical theory of
diffraction is based on the exact solution of the wave
equation and, unlike the Maggi-Rubinowicz method, ex-
hibits the correct asymptotic behavior for high frequen-
cies [6].
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